Search results
Results From The WOW.Com Content Network
A staring array, also known as staring-plane array or focal-plane array (FPA), is an image sensor consisting of an array (typically rectangular) of light-sensing pixels at the focal plane of a lens. FPAs are used most commonly for imaging purposes (e.g. taking pictures or video imagery), but can also be used for non-imaging purposes such as ...
Ray-cast image of idealized universal joint with shadow. Ray casting is the methodological basis for 3D CAD/CAM solid modeling and image rendering. It is essentially the same as ray tracing for computer graphics where virtual light rays are "cast" or "traced" on their path from the focal point of a camera through each pixel in the camera sensor to determine what is visible along the ray in the ...
Focal-plane arrays (FPAs) are widely used in radio astronomy. FPAs are arrays of receivers placed at the focus of the optical system in a radio-telescope. The optical system may be a reflector or a lens. Traditional radio-telescopes have only one receiver at the focus of the telescope, but radio-telescopes are now starting to be equipped with ...
The optical configuration for Fourier ptychography. Fourier ptychography is a computational imaging technique based on optical microscopy that consists in the synthesis of a wider numerical aperture from a set of full-field images acquired at various coherent illumination angles, [1] resulting in increased resolution compared to a conventional microscope.
The camera matrix derived in the previous section has a null space which is spanned by the vector = This is also the homogeneous representation of the 3D point which has coordinates (0,0,0), that is, the "camera center" (aka the entrance pupil; the position of the pinhole of a pinhole camera) is at O.
By virtue of the linearity property of optical non-coherent imaging systems, i.e., . Image(Object 1 + Object 2) = Image(Object 1) + Image(Object 2). the image of an object in a microscope or telescope as a non-coherent imaging system can be computed by expressing the object-plane field as a weighted sum of 2D impulse functions, and then expressing the image plane field as a weighted sum of the ...
where = [] is the homogeneous world point, = [] is the corresponding homogeneous image point, is the matrix of intrinsic camera parameters, (where and are the scaled focal lengths, is the skew parameter which is sometimes assumed to be 0, and (,) is the principal point), is a scale factor for the image point, and and are the desired 3D rotation ...
Fourier optics begins with the homogeneous, scalar wave equation (valid in source-free regions): (,) = where is the speed of light and u(r,t) is a real-valued Cartesian component of an electromagnetic wave propagating through a free space (e.g., u(r, t) = E i (r, t) for i = x, y, or z where E i is the i-axis component of an electric field E in the Cartesian coordinate system).