When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. QM-AM-GM-HM inequalities - Wikipedia

    en.wikipedia.org/wiki/QM-AM-GM-HM_Inequalities

    In mathematics, the QM-AM-GM-HM inequalities, also known as the mean inequality chain, state the relationship between the harmonic mean, geometric mean, arithmetic mean, and quadratic mean (also known as root mean square). Suppose that ,, …, are positive real numbers. Then

  3. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    Proof without words of the AMGM inequality: PR is the diameter of a circle centered on O; its radius AO is the arithmetic mean of a and b. Using the geometric mean theorem, triangle PGR's altitude GQ is the geometric mean. For any ratio a:b, AO ≥ GQ. Visual proof that (x + y) 2 ≥ 4xy. Taking square roots and dividing by two gives the AM ...

  4. Harmonic mean - Wikipedia

    en.wikipedia.org/wiki/Harmonic_mean

    Since by the inequality of arithmetic and geometric means, this shows for the n = 2 case that H ≤ G (a property that in fact holds for all n). It also follows that G = A H {\displaystyle G={\sqrt {AH}}} , meaning the two numbers' geometric mean equals the geometric mean of their arithmetic and harmonic means.

  5. Pythagorean means - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_means

    In mathematics, the three classical Pythagorean means are the arithmetic mean (AM), the geometric mean (GM), and the harmonic mean (HM). These means were studied with proportions by Pythagoreans and later generations of Greek mathematicians [ 1 ] because of their importance in geometry and music.

  6. Generalized mean - Wikipedia

    en.wikipedia.org/wiki/Generalized_mean

    We get the inequality for means with exponents −p and −q, and we can use the same reasoning backwards, thus proving the inequalities to be equivalent, which will be used in some of the later proofs.

  7. Geometric mean - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean

    The equally distributed welfare equivalent income associated with an Atkinson Index with an inequality aversion parameter of 1.0 is simply the geometric mean of incomes. For values other than one, the equivalent value is an Lp norm divided by the number of elements, with p equal to one minus the inequality aversion parameter.

  8. Talk:AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/Talk:AM–GM_inequality

    The name "inequality of arithmetic and geometric means" is not Wikipedia-only, it is the classic name for the inequality before it became acronymized. For instance, that exact name can be found in the 2nd edition of Chrystal's Algebra: An Elementary Text-Book published in 1900.

  9. Geometric mean theorem - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean_theorem

    Another application of this theorem provides a geometrical proof of the AMGM inequality in the case of two numbers. For the numbers p and q one constructs a half circle with diameter p + q. Now the altitude represents the geometric mean and the radius the arithmetic mean of the two numbers.