Search results
Results From The WOW.Com Content Network
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler (c. 1750). Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse .
In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in (the real-number plane) are called double integrals, and integrals of a function of three variables over a region ...
The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals.
Si(x) (blue) and Ci(x) (green) shown on the same plot. Sine integral in the complex plane, plotted with a variant of domain coloring. Cosine integral in the complex plane. Note the branch cut along the negative real axis. In mathematics, trigonometric integrals are a family of nonelementary integrals involving trigonometric functions.
The X-bar chart is always used in conjunction with a variation chart such as the ¯ and R chart or ¯ and s chart. The R-chart shows sample ranges (difference between the largest and the smallest values in the sample), while the s-chart shows the samples' standard deviation. The R-chart was preferred in times when calculations were performed ...
Plot of the Jacobi ellipse (x 2 + y 2 /b 2 = 1, b real) and the twelve Jacobi elliptic functions pq(u,m) for particular values of angle φ and parameter b. The solid curve is the ellipse, with m = 1 − 1/b 2 and u = F(φ,m) where F(⋅,⋅) is the elliptic integral of the first kind (with parameter =). The dotted curve is the unit circle.
An integral representation of a function is an expression of the function involving a contour integral. Various integral representations are known for many special functions. Integral representations can be important for theoretical reasons, e.g. giving analytic continuation or functional equations, or sometimes for numerical evaluations.