When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hardy–Ramanujan–Littlewood circle method - Wikipedia

    en.wikipedia.org/wiki/Hardy–Ramanujan...

    The initial idea is usually attributed to the work of Hardy with Srinivasa Ramanujan a few years earlier, in 1916 and 1917, on the asymptotics of the partition function.It was taken up by many other researchers, including Harold Davenport and I. M. Vinogradov, who modified the formulation slightly (moving from complex analysis to exponential sums), without changing the broad lines.

  3. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    The interpolation polynomial passes through all four control points, and each scaled basis polynomial passes through its respective control point and is 0 where x corresponds to the other three control points. In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree that interpolates a given set of ...

  4. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    Finding one root; Finding all roots; Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work ...

  5. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    Simple roots are Lipschitz continuous with respect to coefficients but multiple roots are not. In other words, simple roots have bounded sensitivities but multiple roots are infinitely sensitive if the coefficients are perturbed arbitrarily. As a result, most root-finding algorithms suffer substantial loss of accuracy on multiple roots in ...

  6. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  7. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.

  8. Gauss–Lucas theorem - Wikipedia

    en.wikipedia.org/wiki/Gauss–Lucas_theorem

    In complex analysis, a branch of mathematics, the Gauss–Lucas theorem gives a geometric relation between the roots of a polynomial P and the roots of its derivative P'.The set of roots of a real or complex polynomial is a set of points in the complex plane.

  9. Sum of radicals - Wikipedia

    en.wikipedia.org/wiki/Sum_of_radicals

    In mathematics, a sum of radicals is defined as a finite linear combination of n th roots: =, where , are natural numbers and , are real numbers.. A particular special case arising in computational complexity theory is the square-root sum problem, asking whether it is possible to determine the sign of a sum of square roots, with integer coefficients, in polynomial time.