When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    Excess kurtosis, typically compared to a value of 0, characterizes the “tailedness” of a distribution. A univariate normal distribution has an excess kurtosis of 0. Negative excess kurtosis indicates a platykurtic distribution, which doesn’t necessarily have a flat top but produces fewer or less extreme outliers than the normal distribution.

  3. Cokurtosis - Wikipedia

    en.wikipedia.org/wiki/Cokurtosis

    Let X and Y each be normally distributed with correlation coefficient ρ. The cokurtosis terms are (,,,) = +(,,,) = (,,,) =Since the cokurtosis depends only on ρ, which is already completely determined by the lower-degree covariance matrix, the cokurtosis of the bivariate normal distribution contains no new information about the distribution.

  4. Beta distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_distribution

    The plot of excess kurtosis as a function of the variance and the mean shows that the minimum value of the excess kurtosis (−2, which is the minimum possible value for excess kurtosis for any distribution) is intimately coupled with the maximum value of variance (1/4) and the symmetry condition: the mean occurring at the midpoint (μ = 1/2).

  5. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    Probability plots for distributions other than the normal are computed in exactly the same way. The normal quantile function Φ −1 is simply replaced by the quantile function of the desired distribution. In this way, a probability plot can easily be generated for any distribution for which one has the quantile function.

  6. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  7. Skewed generalized t distribution - Wikipedia

    en.wikipedia.org/wiki/Skewed_generalized_t...

    where is the beta function, is the location parameter, > is the scale parameter, < < is the skewness parameter, and > and > are the parameters that control the kurtosis. and are not parameters, but functions of the other parameters that are used here to scale or shift the distribution appropriately to match the various parameterizations of this distribution.

  8. Student's t-distribution - Wikipedia

    en.wikipedia.org/wiki/Student's_t-distribution

    The probability density function is symmetric, and its overall shape resembles the bell shape of a normally distributed variable with mean 0 and variance 1, except that it is a bit lower and wider. As the number of degrees of freedom grows, the t distribution approaches the normal distribution with mean 0 and variance 1.

  9. Shape parameter - Wikipedia

    en.wikipedia.org/wiki/Shape_parameter

    Most simply, they can be estimated in terms of the higher moments, using the method of moments, as in the skewness (3rd moment) or kurtosis (4th moment), if the higher moments are defined and finite. Estimators of shape often involve higher-order statistics (non-linear functions of the data), as in the higher moments, but linear estimators also ...