Search results
Results From The WOW.Com Content Network
Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a. In arithmetic modulo an integer m , the more commonly used term is index : One can write k = ind b a (mod m ) (read "the index of a to the base b modulo m ") for b k ≡ a (mod m ) if b is a primitive ...
The hidden subgroup problem (HSP) is a topic of research in mathematics and theoretical computer science.The framework captures problems such as factoring, discrete logarithm, graph isomorphism, and the shortest vector problem.
The logarithm is denoted "log b x" (pronounced as "the logarithm of x to base b", "the base-b logarithm of x", or most commonly "the log, base b, of x "). An equivalent and more succinct definition is that the function log b is the inverse function to the function x ↦ b x {\displaystyle x\mapsto b^{x}} .
Computing the discrete logarithm is the only known method for solving the CDH problem. But there is no proof that it is, in fact, the only method. It is an open problem to determine whether the discrete log assumption is equivalent to the CDH assumption, though in certain special cases this can be shown to be the case. [3] [4]
The algorithm is performed in three stages. The first two stages depend only on the generator g and prime modulus q, and find the discrete logarithms of a factor base of r small primes. The third stage finds the discrete log of the desired number h in terms of the discrete logs of the factor base.
In computational number theory and computational algebra, Pollard's kangaroo algorithm (also Pollard's lambda algorithm, see Naming below) is an algorithm for solving the discrete logarithm problem. The algorithm was introduced in 1978 by the number theorist John M. Pollard , in the same paper as his better-known Pollard's rho algorithm for ...
The discrete logarithm problem in a finite field consists of solving the equation = for ,, a prime number and an integer. The function f : F p n → F p n , a ↦ a x {\displaystyle f:\mathbb {F} _{p^{n}}\to \mathbb {F} _{p^{n}},a\mapsto a^{x}} for a fixed x ∈ N {\displaystyle x\in \mathbb {N} } is a one-way function used in cryptography .
A log amplifier, which may spell log as logarithmic or logarithm and which may abbreviate amplifier as amp or be termed as a converter, is an electronic amplifier that for some range of input voltage has an output voltage approximately proportional to the logarithm of the input: