When.com Web Search

  1. Ads

    related to: how to increase magnetic strength of wire in car battery system

Search results

  1. Results From The WOW.Com Content Network
  2. Electromagnetic coil - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_coil

    The advantage of using the coil shape is that it increases the strength of the magnetic field produced by a given current. The magnetic fields generated by the separate turns of wire all pass through the center of the coil and add to produce a strong field there. [3] The greater the number of turns of wire, the stronger the field produced.

  3. Superconducting magnetic energy storage - Wikipedia

    en.wikipedia.org/wiki/Superconducting_magnetic...

    The critical current of HTSC wire is lower than LTSC wire generally in the operating magnetic field, about 5 to 10 teslas (T). Assume the wire costs are the same by weight. Because HTSC wire has lower (J c) value than LTSC wire, it will take much more wire to create the same inductance. Therefore, the cost of wire is much higher than LTSC wire.

  4. Electromagnet - Wikipedia

    en.wikipedia.org/wiki/Electromagnet

    To concentrate the magnetic field in an electromagnet, the wire is wound into a coil with many turns of wire lying side-by-side. [2] The magnetic field of all the turns of wire passes through the center of the coil, creating a strong magnetic field there. [2] A coil forming the shape of a straight tube (a helix) is called a solenoid. [1] [2 ...

  5. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    the magnetic field B changes (e.g. an alternating magnetic field, or moving a wire loop towards a bar magnet where the B field is stronger), the wire loop is deformed and the surface Σ changes, the orientation of the surface dA changes (e.g. spinning a wire loop into a fixed magnetic field), any combination of the above

  6. Magnetoresistance - Wikipedia

    en.wikipedia.org/wiki/Magnetoresistance

    With the magnetic field turned off, a radial current flows in the conducting annulus due to the battery connected between the (infinite) conductivity rims. When a magnetic field along the axis is turned on (B points directly out of the screen), the Lorentz force drives a circular component of current, and the resistance between the inner and ...

  7. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    In more visual terms, the magnetic flux through the wire loop is proportional to the number of magnetic field lines that pass through the loop. When the flux changes—because B changes, or because the wire loop is moved or deformed, or both—Faraday's law of induction says that the wire loop acquires an emf , defined as the energy available ...

  8. Electromagnetic suspension - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_suspension

    The strength of the generated magnetic field is proportional to the current through the wire. When a wire is coiled, this generated magnetic field is concentrated through the center of the coil. The strength of this field can be greatly increased by placing a ferromagnetic material in the center of the coil. This field is easily manipulated by ...

  9. Magnetic circuit - Wikipedia

    en.wikipedia.org/wiki/Magnetic_circuit

    Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.