When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Syllogism - Wikipedia

    en.wikipedia.org/wiki/Syllogism

    A syllogism (Ancient Greek: συλλογισμός, syllogismos, 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.

  3. List of rules of inference - Wikipedia

    en.wikipedia.org/wiki/List_of_rules_of_inference

    The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.

  4. List of valid argument forms - Wikipedia

    en.wikipedia.org/wiki/List_of_valid_argument_forms

    In syllogistic logic, there are 256 possible ways to construct categorical syllogisms using the A, E, I, and O statement forms in the square of opposition. Of the 256, only 24 are valid forms. Of the 24 valid forms, 15 are unconditionally valid, and 9 are conditionally valid.

  5. Disjunctive syllogism - Wikipedia

    en.wikipedia.org/wiki/Disjunctive_syllogism

    The name "disjunctive syllogism" derives from its being a syllogism, a three-step argument, and the use of a logical disjunction (any "or" statement.) For example, "P or Q" is a disjunction, where P and Q are called the statement's disjuncts. The rule makes it possible to eliminate a disjunction from a logical proof. It is the rule that

  6. De Morgan's laws - Wikipedia

    en.wikipedia.org/wiki/De_Morgan's_laws

    De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.

  7. Destructive dilemma - Wikipedia

    en.wikipedia.org/wiki/Destructive_dilemma

    Destructive dilemma [1] [2] is the name of a valid rule of inference of propositional logic.It is the inference that, if P implies Q and R implies S and either Q is false or S is false, then either P or R must be false.

  8. Negative conclusion from affirmative premises - Wikipedia

    en.wikipedia.org/wiki/Negative_conclusion_from...

    The rule states that a syllogism in which both premises are of form a or i (affirmative) cannot reach a conclusion of form e or o (negative). Exactly one of the premises must be negative to construct a valid syllogism with a negative conclusion. (A syllogism with two negative premises commits the related fallacy of exclusive premises.)

  9. Rule of inference - Wikipedia

    en.wikipedia.org/wiki/Rule_of_inference

    An example of a rule that is not effective in this sense is the infinitary ω-rule. [1] Popular rules of inference in propositional logic include modus ponens, modus tollens, and contraposition. First-order predicate logic uses rules of inference to deal with logical quantifiers.