When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiple subset sum - Wikipedia

    en.wikipedia.org/wiki/Multiple_subset_sum

    Max-sum MSSP: for each subset j in 1,...,m, there is a capacity C j. The goal is to make the sum of all subsets as large as possible, such that the sum in each subset j is at most C j. [1] Max-min MSSP (also called bottleneck MSSP or BMSSP): again each subset has a capacity, but now the goal is to make the smallest subset sum as large as ...

  3. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete.

  4. Sumset - Wikipedia

    en.wikipedia.org/wiki/Sumset

    In additive combinatorics, the sumset (also called the Minkowski sum) of two subsets and of an abelian group (written additively) is defined to be the set of all sums of an element from with an element from .

  5. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    In the subset sum problem, the goal is to find a subset of S whose sum is a certain target number T given as input (the partition problem is the special case in which T is half the sum of S). In multiway number partitioning , there is an integer parameter k , and the goal is to decide whether S can be partitioned into k subsets of equal sum ...

  6. Summed-area table - Wikipedia

    en.wikipedia.org/wiki/Summed-area_table

    Using a summed-area table (2.) of a 6×6 matrix (1.) to sum up a subrectangle of its values; each coloured spot highlights the sum inside the rectangle of that colour. A summed-area table is a data structure and algorithm for quickly and efficiently generating

  7. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.

  8. Coin problem - Wikipedia

    en.wikipedia.org/wiki/Coin_problem

    With only 2 pence and 5 pence coins, one cannot make 3 pence, but one can make any higher integer amount. Frobenius coin problem with 2-pence and 5-pence coins visualised as graphs: Sloping lines denote graphs of 2 x +5 y = n where n is the total in pence, and x and y are the non-negative number of 2p and 5p coins, respectively.

  9. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    For K and L compact convex subsets in , the Minkowski sum can be described by the support function of the convex sets: + = +. For p ≥ 1, Firey [11] defined the L p Minkowski sum K + p L of compact convex sets K and L in containing the origin as

  1. Related searches sum of subset calculator math playground free play ducky one 2 change color

    wikipedia subset sumsubset sum algorithm
    subset sum examplessubset sum problems examples