Ads
related to: sum of subset calculator math playground free play ducky one 2 software download
Search results
Results From The WOW.Com Content Network
The multiple subset sum problem is an optimization problem in computer science and operations research.It is a generalization of the subset sum problem.The input to the problem is a multiset of n integers and a positive integer m representing the number of subsets.
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely . [1] The problem is known to be NP-complete.
In additive combinatorics, the sumset (also called the Minkowski sum) of two subsets and of an abelian group (written additively) is defined to be the set of all sums of an element from with an element from .
Genius (also known as the Genius Math Tool) is a free open-source numerical computing environment and programming language, [2] similar in some aspects to MATLAB, GNU Octave, Mathematica and Maple. Genius is aimed at mathematical experimentation rather than computationally intensive tasks. It is also very useful as just a calculator.
In the subset sum problem, the goal is to find a subset of S whose sum is a certain target number T given as input (the partition problem is the special case in which T is half the sum of S). In multiway number partitioning , there is an integer parameter k , and the goal is to decide whether S can be partitioned into k subsets of equal sum ...
[1]: sec.5 The problem is parametrized by a positive integer k, and called k-way number partitioning. [2] The input to the problem is a multiset S of numbers (usually integers), whose sum is k*T. The associated decision problem is to decide whether S can be partitioned into k subsets such that the sum of each subset is exactly T.
For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.
For example, the set of odd numbers is a sum-free subset of the integers, and the set {N + 1, ..., 2N } forms a large sum-free subset of the set {1, ..., 2N }. Fermat's Last Theorem is the statement that, for a given integer n > 2, the set of all nonzero n th powers of the integers is a sum-free set.