Search results
Results From The WOW.Com Content Network
The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.
In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human–machine collaboration. This involves some sort of interactive proof editor, or other interface , with which a human can guide the search for proofs, the details of which are ...
In number theory, Bertrand's postulate is the theorem that for any integer >, there exists at least one prime number with n < p < 2 n − 2. {\displaystyle n<p<2n-2.} A less restrictive formulation is: for every n > 1 {\displaystyle n>1} , there is always at least one prime p {\displaystyle p} such that
In mathematics, Bertrand's postulate (now a theorem) states that, for each , there is a prime such that < <.First conjectured in 1845 by Joseph Bertrand, [1] it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan.
The theorem is: [14] In a projective plane, every non-collinear set of n points determines at least n distinct lines. As the authors pointed out, since their proof was combinatorial, the result holds in a larger setting, in fact in any incidence geometry in which there is a unique line through every pair of distinct points.
It follows from Euclid's parallel postulate that if the two lines are parallel, then the angles of a pair of consecutive interior angles of a transversal are supplementary (Proposition 1.29 of Euclid's Elements). If one pair of consecutive interior angles is supplementary, the other pair is also supplementary.
In modern geometry, a line is usually either taken as a primitive notion with properties given by axioms, [1]: 95 or else defined as a set of points obeying a linear relationship, for instance when real numbers are taken to be primitive and geometry is established analytically in terms of numerical coordinates.
The easiest way to show this is using the Euclidean theorem (equivalent to the fifth postulate) that states that the angles of a triangle sum to two right angles. Given a line ℓ {\displaystyle \ell } and a point P not on that line, construct a line, t , perpendicular to the given one through the point P , and then a perpendicular to this ...