When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.

  3. Proof assistant - Wikipedia

    en.wikipedia.org/wiki/Proof_assistant

    In computer science and mathematical logic, a proof assistant or interactive theorem prover is a software tool to assist with the development of formal proofs by human–machine collaboration. This involves some sort of interactive proof editor, or other interface , with which a human can guide the search for proofs, the details of which are ...

  4. Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_postulate

    In number theory, Bertrand's postulate is the theorem that for any integer >, there exists at least one prime number with n < p < 2 n − 2. {\displaystyle n<p<2n-2.} A less restrictive formulation is: for every n > 1 {\displaystyle n>1} , there is always at least one prime p {\displaystyle p} such that

  5. Proof of Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Proof_of_Bertrand's_postulate

    In mathematics, Bertrand's postulate (now a theorem) states that, for each , there is a prime such that < <.First conjectured in 1845 by Joseph Bertrand, [1] it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan.

  6. Incidence geometry - Wikipedia

    en.wikipedia.org/wiki/Incidence_geometry

    The theorem is: [14] In a projective plane, every non-collinear set of n points determines at least n distinct lines. As the authors pointed out, since their proof was combinatorial, the result holds in a larger setting, in fact in any incidence geometry in which there is a unique line through every pair of distinct points.

  7. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    It follows from Euclid's parallel postulate that if the two lines are parallel, then the angles of a pair of consecutive interior angles of a transversal are supplementary (Proposition 1.29 of Euclid's Elements). If one pair of consecutive interior angles is supplementary, the other pair is also supplementary.

  8. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    In modern geometry, a line is usually either taken as a primitive notion with properties given by axioms, [1]: 95 or else defined as a set of points obeying a linear relationship, for instance when real numbers are taken to be primitive and geometry is established analytically in terms of numerical coordinates.

  9. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    The easiest way to show this is using the Euclidean theorem (equivalent to the fifth postulate) that states that the angles of a triangle sum to two right angles. Given a line ℓ {\displaystyle \ell } and a point P not on that line, construct a line, t , perpendicular to the given one through the point P , and then a perpendicular to this ...