When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    A definite bound on the prime factors is possible. Suppose P i is the i 'th prime, so that P 1 = 2, P 2 = 3, P 3 = 5, etc. Then the last prime number worth testing as a possible factor of n is P i where P 2 i + 1 > n; equality here would mean that P i + 1 is a factor. Thus, testing with 2, 3, and 5 suffices up to n = 48 not just 25 because the ...

  3. Prime omega function - Wikipedia

    en.wikipedia.org/wiki/Prime_omega_function

    The number of distinct prime factors is assigned to () (little omega), while () (big omega) counts the total number of prime factors with multiplicity (see arithmetic function). That is, if we have a prime factorization of of the form = for distinct primes (), then the prime omega functions are given by () = and () = + + +. These prime-factor ...

  4. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    But when + is not prime, the first factor becomes zero and the formula produces the prime number 2. [1] This formula is not an efficient way to generate prime numbers because evaluating n ! mod ( n + 1 ) {\displaystyle n!{\bmod {(}}n+1)} requires about n − 1 {\displaystyle n-1} multiplications and reductions modulo n + 1 {\displaystyle n+1} .

  5. Fundamental theorem of arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. [3] [4] [5] For example,

  6. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.

  7. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    Scott Aaronson suggests the following 12 references as further reading (out of "the 10 10 5000 quantum algorithm tutorials that are already on the web."): Shor, Peter W. (1997), "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer", SIAM J. Comput. , 26 (5): 1484– 1509, arXiv : quant-ph/9508027v2 ...

  8. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of ...

  9. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    Because the prime factorization of a highly composite number uses all of the first k primes, every highly composite number must be a practical number. [8] Due to their ease of use in calculations involving fractions , many of these numbers are used in traditional systems of measurement and engineering designs.