Search results
Results From The WOW.Com Content Network
Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.
The formula is a special case of the Euler–Boole summation formula for alternating series, providing yet another example of a convergence acceleration technique that can be applied to the Leibniz series. In 1992, Jonathan Borwein and Mark Limber used the first thousand Euler numbers to calculate π to 5,263 decimal places with the Leibniz ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The Bailey–Borwein–Plouffe formula (BBP formula) is a formula for π. It was discovered in 1995 by Simon Plouffe and is named after the authors of the article in which it was published, David H. Bailey, Peter Borwein, and Plouffe. [1] Before that, it had been published by Plouffe on his own site. [2] The formula is:
The specific value = can be used to calculate the circle constant π, and the arctangent series for 1 is conventionally called Leibniz's series. In recognition of Madhava's priority , in recent literature these series are sometimes called the Madhava–Newton series , [ 4 ] Madhava–Gregory series , [ 5 ] or Madhava–Leibniz series [ 6 ...
The extremely slow convergence of the arctangent series for | | makes this formula impractical per se. Kerala-school mathematicians used additional correction terms to speed convergence. John Machin (1706) expressed 1 4 π {\displaystyle {\tfrac {1}{4}}\pi } as a sum of arctangents of smaller values, eventually resulting in a variety of ...
This category presents articles pertaining to the calculation of Pi to arbitrary precision. Pages in category "Pi algorithms" The following 17 pages are in this category, out of 17 total.
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.