When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Asymptote - Wikipedia

    en.wikipedia.org/wiki/Asymptote

    If x=a is a vertical asymptote of f(x), then x=a+h is a vertical asymptote of f(x-h) If y=c is a horizontal asymptote of f(x), then y=c+k is a horizontal asymptote of f(x)+k; If a known function has an asymptote, then the scaling of the function also have an asymptote. If y=ax+b is an asymptote of f(x), then y=cax+cb is an asymptote of cf(x)

  3. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    The vertical and horizontal lines are asymptotes. In the same way, it can be shown that the reciprocal of a continuous function r = 1 / f {\displaystyle r=1/f} (defined by r ( x ) = 1 / f ( x ) {\displaystyle r(x)=1/f(x)} for all x ∈ D {\displaystyle x\in D} such that f ( x ) ≠ 0 {\displaystyle f(x)\neq 0} ) is continuous in D ∖ { x : f ...

  4. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    An illustrative example is the derivation of the boundary layer equations from the full Navier-Stokes equations governing fluid flow. In many cases, the asymptotic expansion is in power of a small parameter, ε : in the boundary layer case, this is the nondimensional ratio of the boundary layer thickness to a typical length scale of the problem.

  5. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    A sigmoid function is constrained by a pair of horizontal asymptotes as . A sigmoid function is convex for values less than a particular point, and it is concave for values greater than that point: in many of the examples here, that point is 0.

  6. Gompertz function - Wikipedia

    en.wikipedia.org/wiki/Gompertz_function

    The inverse function only produces numerical values in the set of real numbers between its two asymptotes, which are now vertical instead of horizontal like in the forward Gompertz function. Outside of the range defined by the vertical asymptotes, the inverse function requires computing the logarithm of negative numbers.

  7. Asymptotology - Wikipedia

    en.wikipedia.org/wiki/Asymptotology

    In physics and other fields of science, one frequently comes across problems of an asymptotic nature, such as damping, orbiting, stabilization of a perturbed motion, etc. Their solutions lend themselves to asymptotic analysis (perturbation theory), which is widely used in modern applied mathematics, mechanics and physics. But asymptotic methods ...

  8. Asymptotic curve - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_curve

    The asymptotic directions are the same as the asymptotes of the hyperbola of the Dupin indicatrix through a hyperbolic point, or the unique asymptote through a parabolic point. [1] An asymptotic direction is a direction along which the normal curvature is zero: take the plane spanned by the direction and the surface's normal at that point. The ...

  9. Semi-log plot - Wikipedia

    en.wikipedia.org/wiki/Semi-log_plot

    On a log–linear plot (logarithmic scale on the y-axis), pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph.