Search results
Results From The WOW.Com Content Network
There is a narrow bridge, and it can only hold two people at a time. They have one torch and, because it's night, the torch has to be used when crossing the bridge. Person A can cross the bridge in 1 minute, B in 2 minutes, C in 5 minutes, and D in 8 minutes. When two people cross the bridge together, they must move at the slower person's pace.
This is a different voyage than the one shown above, as both schemes take the same assumed total point-of-view time: T=12 (stay-at-home), resp τ=12 (ship), so the results of the calculated other-one's times must be different: τ=9.33 (ship), resp T=17.3 (stay at home). In the standard proper time formula
Only one door is closed at any time. The solution to the apparent paradox lies in the relativity of simultaneity: what one observer (e.g. with the garage) considers to be two simultaneous events may not in fact be simultaneous to another observer (e.g. with the ladder). When we say the ladder "fits" inside the garage, what we mean precisely is ...
For premium support please call: 800-290-4726 more ways to reach us
The outer coin makes two rotations rolling once around the inner coin. The path of a single point on the edge of the moving coin is a cardioid.. The coin rotation paradox is the counter-intuitive math problem that, when one coin is rolled around the rim of another coin of equal size, the moving coin completes not one but two full rotations after going all the way around the stationary coin ...
The seemingly "simple" elementary brain-teaser asks one student "Reasonableness: Marty ate 4/6 of his pizza and Luis ate 5/6 of his pizza. Marty ate more pizza than Luis.
A 2-colouring of K 5 with no monochromatic K 3. The conclusion to the theorem does not hold if we replace the party of six people by a party of fewer than six. To show this, we give a coloring of K 5 with red and blue that does not contain a triangle with all edges the same color. We draw K 5 as a pentagon surrounding a star (a pentagram). We ...
When two points as A and B of the line ABC are chosen, each of the five other lines through A is met by only one of the five other lines through B. The five points determined by the intersections of these pairs of lines, together with the two points A and B we designate a "heptad". [27]: 68 A heptad is determined by any two of its points.