Search results
Results From The WOW.Com Content Network
A simple electric circuit made up of a voltage source and a resistor. Here, =, according to Ohm's law. An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances ...
An n-terminal network can, at best, be reduced to n impedances (at worst ()). For a three terminal network, the three impedances can be expressed as a three node delta (Δ) network or four node star (Y) network. These two networks are equivalent and the transformations between them are given below.
Reciprocity of electrical networks is a special case of Lorentz reciprocity, but it can also be proven more directly from network theorems. This proof shows reciprocity for a two-node network in terms of its admittance matrix, and then shows reciprocity for a network with an arbitrary number of nodes by an induction argument.
In a network analysis of such a circuit from a topological point of view, the network nodes are the vertices of graph theory, and the network branches are the edges of graph theory. Standard graph theory can be extended to deal with active components and multi-terminal devices such as integrated circuits .
This page is a list of network theory topics. Network theorems. Max flow min cut theorem; ... Electrical network; Gene regulatory network; Global shipping network;
Network synthesis is all about designing an electrical network that behaves in a prescribed way without any preconception of the network form. Typically, an impedance is required to be synthesised using passive components. That is, a network consisting of resistances (R), inductances (L) and capacitances (C).
Network analysis (electrical circuits): Essential for comprehending capacitor and inductor behavior under changing voltage inputs, particularly significant in fields such as signal processing, power electronics, and control systems. This entails solving intricate networks of resistors through techniques like node-voltage and mesh-current methods.
Switching circuit theory is the mathematical study of the properties of networks of idealized switches. Such networks may be strictly combinational logic, in which their output state is only a function of the present state of their inputs; or may also contain sequential elements, where the present state depends on the present state and past states; in that sense, sequential circuits are said ...