Search results
Results From The WOW.Com Content Network
calorie (International Table) cal IT: ≡ 4.1868 J = 4.1868 J: calorie (mean) cal mean: 1 ⁄ 100 of the energy required to warm one gram of air-free water from 0 °C to 100 °C at a pressure of 1 atm ≈ 4.190 02 J: calorie (thermochemical) cal th: ≡ 4.184 J = 4.184 J: Calorie (US; FDA) Cal ≡ 1 kcal = 1000 cal = 4184 J: calorie (3.98 °C ...
The langmuir is defined by multiplying the pressure of the gas by the time of exposure. One langmuir corresponds to an exposure of 10 −6 Torr during one second. [1] [2] For example, exposing a surface to a gas pressure of 10 −8 Torr for 100 seconds corresponds to 1 L.
Other units of pressure include: The bar (symbol: bar), defined as 100 kPa exactly. The atmosphere (symbol: atm), defined as 101.325 kPa exactly. These four pressure units are used in different settings. For example, the bar is used in meteorology to report atmospheric pressures. [7] The torr is used in high-vacuum physics and engineering. [8] [9]
Values are given in terms of temperature necessary to reach the specified pressure. Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).
Pressure used in boilers of steam locomotives [citation needed] 1.1 MPa 162 psi Pressure of an average human bite [citation needed] 2.8–8.3 MPa 400–1,200 psi Pressure of carbon dioxide propellant in a paintball gun [64] 5 MPa 700 psi Water pressure of the output of a coin-operated car wash spray nozzle [58] 5 MPa 700 psi
Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure mechanically are called pressure gauges, vacuum gauges or compound gauges (vacuum & pressure). The widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known ...
This usually is not the case as the most important change between these two definitions is the pressure. To move a gas, a positive pressure or a vacuum must be created. When positive pressure is applied to a standard cubic foot of gas, it is compressed. When a vacuum is applied to a standard cubic foot of gas, it expands.
Ultra-high vacuum (often spelled ultrahigh in American English, UHV) is the vacuum regime characterised by pressures lower than about 1 × 10 −6 pascals (1.0 × 10 −8 mbar; 7.5 × 10 −9 Torr). UHV conditions are created by pumping the gas out of a UHV chamber.