Search results
Results From The WOW.Com Content Network
By careful choice of the type and thickness of the dielectric layers, one can design an optical coating with specified reflectivity at different wavelengths of light. Dielectric mirrors are also used to produce ultra-high reflectivity mirrors: values of 99.999% or better over a narrow range of wavelengths can be produced using special techniques.
For TE and TM incidence we have the reflection spectra of a DBR stack, corresponding to a 6 layer stack of dielectric contrast of 11.5, between an air and dielectric layers. The thicknesses of the air and dielectric layers are 0.8 and 0.2 of the period, respectively. The wavelength in the figures below, corresponds to multiples of the cell period.
A very complex dielectric mirror can reflect up to 99.999% of the light incident upon it, for a narrow range of wavelengths and angles. A simpler mirror may reflect 99.9% of the light, but may cover a broader range of wavelengths. Almost any dielectric material can act as a perfect mirror through total internal reflection. This effect only ...
A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror.
Another type is the high-reflector coating, which can be used to produce mirrors that reflect greater than 99.99% of the light that falls on them. More complex optical coatings exhibit high reflection over some range of wavelengths , and anti-reflection over another range, allowing the production of dichroic thin-film filters .
A distributed Bragg reflector laser (DBR) is a type of single frequency laser diode. Other practical types of single frequency laser diodes include DFB lasers and external cavity diode lasers. A fourth type, the cleaved-coupled-cavity laser has not proven to be commercially viable. VCSELs are also single frequency devices. [1]
Biomedical sensors working in the microwave range relies on dielectric spectroscopy to detect changes in the dielectric properties over a frequency range, such as non-invasive continuous blood glucose monitoring. [37] [38] The IFAC database can be used as a resource to get the dielectric properties for human body tissues. [39]
Diffuse reflectance spectroscopy, or diffuse reflection spectroscopy, is a subset of absorption spectroscopy.It is sometimes called remission spectroscopy.Remission is the reflection or back-scattering of light by a material, while transmission is the passage of light through a material.