Ad
related to: finding x in logarithmic equations
Search results
Results From The WOW.Com Content Network
In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 103, the logarithm base of 1000 is 3, or log10 (1000) = 3.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.
ln (r) is the standard natural logarithm of the real number r. Arg (z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg (x + iy) = atan2 (y, x). Log (z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].
Calculus. In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula where is the derivative of f. [1] Intuitively, this is the infinitesimal relative change in f; that is, the infinitesimal absolute change in f, namely scaled by the current value of f.
All instances of log (x) without a subscript base should be interpreted as a natural logarithm, also commonly written as ln (x) or loge(x). In mathematics, the prime number theorem (PNT) describes the asymptotic distribution of the prime numbers among the positive integers. It formalizes the intuitive idea that primes become less common as they ...
Discrete logarithm. The problem of inverting exponentiation in finite groups. In mathematics, for given real numbers a and b, the logarithm log b a is a number x such that bx = a. Analogously, in any group G, powers bk can be defined for all integers k, and the discrete logarithm log b a is an integer k such that bk = a.
Logarithmic number systems have been independently invented and published at least three times as an alternative to fixed-point and floating-point number systems. [1]Nicholas Kingsbury and Peter Rayner introduced "logarithmic arithmetic" for digital signal processing (DSP) in 1971.