Search results
Results From The WOW.Com Content Network
Electrons are the charge carriers in most metals and they follow an erratic path, bouncing from atom to atom, but generally drifting in the opposite direction of the electric field. The speed they drift at can be calculated from the equation: where. I {\displaystyle I} is the electric current. n {\displaystyle n}
Atomic units. ≈ 6.241 509 × 1018 e. The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). [1][2] It is equal to the electric charge delivered by a 1 ampere current in 1 second and is defined in terms of the elementary charge e, at about 6.241 509 × 1018 e. [2][1]
"current": AC (for "alternating current"); less commonly, DC (for "direct current"); or even I (the symbol used in physics and electronics) Roman numerals: for example the word "six" in the clue might be used to indicate the letters VI; The name of a chemical element may be used to signify its symbol; e.g., W for tungsten
The ampere (/ ˈæmpɛər / AM-pair, US: / ˈæmpɪər / AM-peer; [1][2][3] symbol: A), [4] often shortened to amp, [5] is the unit of electric current in the International System of Units (SI). One ampere is equal to 1 coulomb (C) moving past a point per second. [6][7][8] It is named after French mathematician and physicist André-Marie ...
The electrostatic potential energy U E stored in a system of two charges is equal to the electrostatic potential energy of a charge in the electrostatic potential generated by the other. That is to say, if charge q 1 generates an electrostatic potential V 1 , which is a function of position r , then U E = q 2 V 1 ( r 2 ) . {\displaystyle U ...
An ampere-hour or amp-hour (symbol: A⋅h or A h; often simplified as Ah) is a unit of electric charge, having dimensions of electric current multiplied by time, equal to the charge transferred by a steady current of one ampere flowing for one hour, or 3,600 coulombs. [1][2] The commonly seen milliampere-hour (symbol: mA⋅h, mA h, often ...
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
Kirchhoff's junction rule states that the current going into a junction (or node) must equal the current that leaves the node. This comes from charge conservation, as current is defined as the flow of charge over time. If a current splits as it exits a junction, the sum of the resultant split currents is equal to the incoming circuit. [37]