When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nuclear shell model - Wikipedia

    en.wikipedia.org/wiki/Nuclear_shell_model

    In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model utilizes the Pauli exclusion principle to model the structure of atomic nuclei in terms of energy levels. [ 1 ] The first shell model was proposed by Dmitri Ivanenko (together with E. Gapon) in 1932. The model was developed in 1949 following independent work by ...

  3. Nilsson model - Wikipedia

    en.wikipedia.org/wiki/Nilsson_model

    The Nilsson model is a nuclear shell model treating the atomic nucleus as a deformed sphere. In 1953, the first experimental examples were found of rotational bands in nuclei, with their energy levels following the same J (J+1) pattern of energies as in rotating molecules. Quantum mechanically, it is impossible to have a collective rotation of ...

  4. Nuclear magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_moment

    According to the shell model, protons or neutrons tend to form pairs of opposite total angular momentum.Therefore, the magnetic moment of a nucleus with even numbers of each protons and neutrons is zero, while that of a nucleus with an odd number of protons and even number of neutrons (or vice versa) will have to be that of the remaining unpaired nucleon.

  5. Magic number (physics) - Wikipedia

    en.wikipedia.org/wiki/Magic_number_(physics)

    A graph of isotope stability, with some of the magic numbers. In nuclear physics, a magic number is a number of nucleons (either protons or neutrons, separately) such that they are arranged into complete shells within the atomic nucleus. As a result, atomic nuclei with a "magic" number of protons or neutrons are much more stable than other nuclei.

  6. Isomeric shift - Wikipedia

    en.wikipedia.org/wiki/Isomeric_shift

    The nuclear shell model [ edit ] According to the nuclear shell model, there exists a class of isomers, for which, in a first approximation, it is sufficient to consider one single nucleon, called the "optical" nucleon, to get an estimate of the difference between the charge distributions of the two isomer states, the rest of the nucleons being ...

  7. Nuclear physics - Wikipedia

    en.wikipedia.org/wiki/Nuclear_physics

    t. e. Nuclear physics is the field of physics that studies atomic nuclei and their constituents and interactions, in addition to the study of other forms of nuclear matter. Nuclear physics should not be confused with atomic physics, which studies the atom as a whole, including its electrons. Discoveries in nuclear physics have led to ...

  8. Angular momentum coupling - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_coupling

    All nuclear levels whose ℓ value (orbital angular momentum) is greater than zero are thus split in the shell model to create states designated by ℓ + s and ℓ − s. Due to the nature of the shell model , which assumes an average potential rather than a central Coulombic potential, the nucleons that go into the ℓ + s and ℓ − s ...

  9. Internal conversion - Wikipedia

    en.wikipedia.org/wiki/Internal_conversion

    However, the s states in the L, M, and N shells (i.e., the 2s, 3s, and 4s states) are also able to couple to the nuclear fields and cause IC electron ejections from those shells (called L or M or N internal conversion). Ratios of K-shell to other L, M, or N shell internal conversion probabilities for various nuclides have been prepared. [3]