Search results
Results From The WOW.Com Content Network
Observability is a measure of how well internal states of a system can be inferred from knowledge of its external outputs. In control theory, the observability and controllability of a linear system are mathematical duals. The concept of observability was introduced by the Hungarian-American engineer Rudolf E. Kálmán for linear dynamic systems.
Linear dynamical systems can be solved exactly, in contrast to most nonlinear ones. Occasionally, a nonlinear system can be solved exactly by a change of variables to a linear system. Moreover, the solutions of (almost) any nonlinear system can be well-approximated by an equivalent linear system near its fixed points. Hence, understanding ...
A "linear time-invariant differential system" is a dynamical system = (,,) whose behavior is the solution set of a system of constant coefficient linear ordinary differential equations (/) =, where is a matrix of polynomials with real coefficients.
In control theory, a state observer, state estimator, or Luenberger observer is a system that provides an estimate of the internal state of a given real system, from measurements of the input and output of the real system. It is typically computer-implemented, and provides the basis of many practical applications.
The state of a deterministic system, which is the set of values of all the system's state variables (those variables characterized by dynamic equations), completely describes the system at any given time. In particular, no information on the past of a system is needed to help in predicting the future, if the states at the present time are known ...
In control theory, the state-transition matrix is a matrix whose product with the state vector at an initial time gives at a later time . The state-transition matrix can be used to obtain the general solution of linear dynamical systems.
In systems theory, a linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically exhibit features and properties that are much simpler than the nonlinear case. As a mathematical abstraction or idealization, linear systems find important applications in automatic control theory, signal ...
In control theory, a Kalman decomposition provides a mathematical means to convert a representation of any linear time-invariant (LTI) control system to a form in which the system can be decomposed into a standard form which makes clear the observable and controllable components of the system.