Search results
Results From The WOW.Com Content Network
Thus, for example, the CGS unit of pressure, barye, is related to the CGS base units of length, mass, and time in the same way as the SI unit of pressure, pascal, is related to the SI base units of length, mass, and time: 1 unit of pressure = 1 unit of force / (1 unit of length) 2 = 1 unit of mass / (1 unit of length × (1 unit of time) 2)
This system is the most common of the several electromagnetic unit systems based on the centimetre–gram–second system of units (CGS). It is also called the Gaussian unit system, Gaussian-cgs units, or often just cgs units. [a] The term "cgs units" is ambiguous and therefore to be avoided if possible: there are several variants of CGS, which ...
Originally, many thước of varying lengths were in use in Vietnam, each used for different purposes. According to Hoàng Phê (1988), [1] the traditional system of units had at least two thước of different lengths before 1890, [2] the thước ta (lit. "our ruler") or thước mộc ("wooden ruler"), equal to 0.425 metres (1 ft 4.7 in), and the thước đo vải ("ruler for measuring ...
In terms of the Gaussian base units, it is 1 statC = 1 dyn 1/2 ⋅cm = 1 cm 3/2 ⋅g 1/2 ⋅s −1 . That is, it is defined so that the proportionality constant in Coulomb's law using CGS-ESU quantities is a dimensionless quantity equal to 1.
The original motivation for the development of the SI was the diversity of units that had sprung up within the centimetre–gram–second (CGS) systems (specifically the inconsistency between the systems of electrostatic units and electromagnetic units) and the lack of coordination between the various disciplines that used them.
Before and in addition to the SI, other metric systems include: the MKS system of units and the MKSA systems, which are the direct forerunners of the SI; the centimetre–gram–second (CGS) system and its subtypes, the CGS electrostatic (cgs-esu) system, the CGS electromagnetic (cgs-emu) system, and their still-popular blend, the Gaussian ...
The dyne is defined as "the force required to accelerate a mass of one gram at a rate of one centimetre per second squared". [2] An equivalent definition of the dyne is "that force which, acting for one second, will produce a change of velocity of one centimetre per second in a mass of one gram".
The erg is a unit of energy equal to 10 −7 joules (100 nJ). It is not an SI unit, instead originating from the centimetre–gram–second system of units (CGS). Its name is derived from ergon (ἔργον), a Greek word meaning 'work' or 'task'. [1] An erg is the amount of work done by a force of one dyne exerted for a distance of one centimetre.