Search results
Results From The WOW.Com Content Network
In land plants and some algae, there is an alternation of generations such that meiosis in the diploid sporophyte generation produces haploid spores instead of gametes. When they germinate, these spores undergo repeated cell division by mitosis, developing into a multicellular haploid gametophyte generation, which then produces gametes directly ...
In plants both phases are multicellular: the haploid sexual phase – the gametophyte – alternates with a diploid asexual phase – the sporophyte. A mature sporophyte produces haploid spores by meiosis, a process which reduces the number of chromosomes to half, from two sets to one. The resulting haploid spores germinate and grow into ...
Meiosis undergoes two divisions resulting in four haploid daughter cells. Homologous chromosomes are separated in the first division of meiosis, such that each daughter cell has one copy of each chromosome. These chromosomes have already been replicated and have two sister chromatids which are then separated during the second division of ...
This image has been assessed under the valued image criteria and is considered the most valued image on Commons within the scope: Biology diagrams, Biology diagrams, and Meiosis. You can see its nomination here .
The sporophyte creates spores via meiosis which also then divide mitotically producing haploid individuals called gametophytes. The gametophytes produce gametes via mitosis. In some plants the gametophyte is not only small-sized but also short-lived; in other plants and many algae, the gametophyte is the "dominant" stage of the life cycle. [19]
After meiosis, each microspore undergoes mitotic cell division, giving rise to multicellular pollen grains (six nuclei in gymnosperms, three nuclei in flowering plants). Megasporogenesis occurs in megastrobili in conifers (for example a pine cone) and inside the ovule in the flowers of flowering plants. A megasporocyte inside a megasporangium ...
The meiotic cell cycle in plants is very different from that of yeast and animal cells. In plant studies, mutations have been identified that affect meiocyte formation or the process of meiosis. [3] Most meiotic mutant plant cells complete the meiotic cell cycle and produce abnormal microspores. [3]
Meiosis generates genetic variation in the diploid cell, in part by the exchange of genetic information between the pairs of chromosomes after they align (recombination). Thus, on this view, [28] an advantage of meiosis is that it facilitates the generation of genomic diversity among progeny, allowing adaptation to adverse changes in the ...