Search results
Results From The WOW.Com Content Network
The Fanning friction factor (named after American engineer John T. Fanning) is a dimensionless number used as a local parameter in continuum mechanics calculations. It is defined as the ratio between the local shear stress and the local flow kinetic energy density: [ 1 ] [ 2 ]
The Darcy friction factor is also known as the Darcy–Weisbach friction factor, resistance coefficient or simply friction factor; by definition it is four times larger than the Fanning friction factor. [1]
Friction factor may refer to: Atkinson friction factor, a measure of the resistance to airflow of a duct; Darcy friction factor, in fluid dynamics; Fanning friction factor, a dimensionless number used as a local parameter in continuum mechanics
John Thomas Fanning (1837–1911) was an American architect and hydraulic engineer. His contribution to fluid mechanics and hydraulic engineering is in the Fanning friction factor which is used by engineers in the present age to calculate the frictional pressures losses in flows inside pipes. [1]
If the value of the friction factor is 0.016, then the Fanning friction factor is plotted in the Moody diagram. Note that the nonzero digits in 0.016 are the numerator in the formula for the laminar Fanning friction factor: f = 16 / Re . The procedure above is similar for any available Reynolds number that is an integer power of ten.
The Wikipedia articles for Darcy and Fanning friction factors reflect the fourfold size ratio of Darcy over Fanning in the laminar region (Darcy f = 64/Re; Fanning f = 16/Re), but in the turbulent region exactly the same Colebrook equation is cited for both.
where is the density of the fluid, is the average velocity in the pipe, is the friction factor from the Moody chart, is the length of the pipe and is the pipe diameter. The chart plots Darcy–Weisbach friction factor f D {\displaystyle f_{D}} against Reynolds number Re for a variety of relative roughnesses, the ratio of the mean height of ...
Fanning friction factor: f: John T. Fanning: fluid mechanics (fraction of pressure losses due to friction in a pipe; 1/4th the Darcy friction factor) [9] Froude number: Fr = William Froude: fluid mechanics (wave and surface behaviour; ratio of a body's inertia to gravitational forces) Galilei number: Ga