When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Energy conversion efficiency - Wikipedia

    en.wikipedia.org/wiki/Energy_conversion_efficiency

    Energy conversion efficiency (η) is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The input, as well as the useful output may be chemical , electric power , mechanical work , light (radiation), or heat .

  3. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

  4. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    By the principle of minimum energy, there are a number of other state functions which may be defined which have the dimensions of energy and which are minimized according to the second law under certain conditions other than constant entropy. These are called thermodynamic potentials. For each such potential, the relevant fundamental equation ...

  5. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    List of conversion factors. ... 1 ⁄ 100 of the energy required to warm one gram of air-free water from 0 °C to 100 °C at a ... Dynamic viscosity; Name of unit ...

  6. Engine efficiency - Wikipedia

    en.wikipedia.org/wiki/Engine_efficiency

    Low speed diesel engines like the MAN S80ME-C7 have achieved an overall energy conversion efficiency of 54.4%, which is the highest conversion of fuel into power by any single-cycle internal or external combustion engine. [9] [10] [11] Engines in large diesel trucks, buses, and newer diesel cars can achieve peak efficiencies around 45%. [12]

  7. Thermal efficiency - Wikipedia

    en.wikipedia.org/wiki/Thermal_efficiency

    In general, energy conversion efficiency is the ratio between the useful output of a device and the input, in energy terms. For thermal efficiency, the input, Q i n {\displaystyle Q_{\rm {in}}} , to the device is heat , or the heat-content of a fuel that is consumed.

  8. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The energy and entropy of unpolarized blackbody thermal radiation, is calculated using the spectral energy and entropy radiance expressions derived by Max Planck [63] using equilibrium statistical mechanics, = ⁡ (), = ((+) ⁡ (+) ⁡ ()) where c is the speed of light, k is the Boltzmann constant, h is the Planck constant, ν is frequency ...

  9. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.