Search results
Results From The WOW.Com Content Network
The Kruskal–Szekeres coordinates also apply to space-time around a spherical object, but in that case do not give a description of space-time inside the radius of the object. Space-time in a region where a star is collapsing into a black hole is approximated by the Kruskal–Szekeres coordinates (or by the Schwarzschild coordinates).
The metric singularity is not a physical one (although there is a real physical singularity at =), as can be shown by using a suitable coordinate transformation (e.g. the Kruskal–Szekeres coordinate system).
In these coordinate systems, outward (inward) traveling radial light rays (which each follow a null geodesic) define the surfaces of constant "time", while the radial coordinate is the usual area coordinate so that the surfaces of rotation symmetry have an area of 4 π r 2.
Kruskal–Szekeres coordinates, a chart covering the entire spacetime manifold of the maximally extended Schwarzschild solution and are well-behaved everywhere outside the physical singularity, Eddington–Finkelstein coordinates, an alternative chart for static spherically symmetric spacetimes,
An example is the apparent (longitudinal) singularity at the 90 degree latitude in spherical coordinates. An object moving due north (for example, along the line 0 degrees longitude ) on the surface of a sphere will suddenly experience an instantaneous change in longitude at the pole (i.e., jumping from longitude 0 to longitude 180 degrees).
The constant tachyonic geodesic outside is not continued by a constant geodesic inside , but rather continues into a "parallel exterior region" (see Kruskal–Szekeres coordinates). Other tachyonic solutions can enter a black hole and re-exit into the parallel exterior region.
Penrose diagram of an infinite Minkowski universe, horizontal axis u, vertical axis v. In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity.
It is a bit confusing that there are two variables 'r'—one from classic Schwarzschild metric, and one implicitly defined for the Kruskal-Szekeres line element. Perhaps they are the same. --NormHardy 20:12, 13 August 2006 (UTC) The two r are the same (unless I'm misunderstanding your question) — the Schwarzschild coordinate.