Search results
Results From The WOW.Com Content Network
Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1]The choice of the test depends on many properties of the research question.
used to test lung function by testing the rate at which the person can exhale; useful to diagnose COPD and asthma: Mercury or other manometers: used to measure pressure of a fluid within a cavity like the spinal canal, which is raised in certain diseases Electrocardiogra Urinometer Estimation of specific gravity of urine. Esbach's Albuminometer
Starting in the 2010s, some journals began questioning whether significance testing, and particularly using a threshold of α =5%, was being relied on too heavily as the primary measure of validity of a hypothesis. [52] Some journals encouraged authors to do more detailed analysis than just a statistical significance test.
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
For comparing significance tests, a meaningful measure of efficiency can be defined based on the sample size required for the test to achieve a given task power. [14] Pitman efficiency [15] and Bahadur efficiency (or Hodges–Lehmann efficiency) [16] [17] [18] relate to the comparison of the performance of statistical hypothesis testing procedures.
Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.
T(y) is the value of the test statistic for an outcome y, with larger values of T representing cases which notionally represent greater departures from the null hypothesis, and where the sum ranges over all outcomes y (including the observed one) that have the same value of the test statistic obtained for the observed sample x, or a larger one.
Median test: tests whether two samples are drawn from distributions with equal medians. Pitman's permutation test: a statistical significance test that yields exact p values by examining all possible rearrangements of labels. Rank products: detects differentially expressed genes in replicated microarray experiments.