Search results
Results From The WOW.Com Content Network
Thévenin's theorem and its dual, Norton's theorem, are widely used to make circuit analysis simpler and to study a circuit's initial-condition and steady-state response. [ 8 ] [ 9 ] Thévenin's theorem can be used to convert any circuit's sources and impedances to a Thévenin equivalent ; use of the theorem may in some cases be more convenient ...
In general, the concept of source transformation is an application of Thévenin's theorem to a current source, or Norton's theorem to a voltage source. However, this means that source transformation is bound by the same conditions as Thevenin's theorem and Norton's theorem; namely that the load behaves linearly, and does not contain dependent ...
Norton's Theorem: Any two-terminal collection of voltage sources and resistors is electrically equivalent to an ideal current source in parallel with a single resistor. Thévenin's Theorem: Any two-terminal combination of voltage sources and resistors is electrically equivalent to a single voltage source in series with a single resistor.
In direct-current circuit theory, Norton's theorem, also called the Mayer–Norton theorem, is a simplification that can be applied to networks made of linear time-invariant resistances, voltage sources, and current sources. At a pair of terminals of the network, it can be replaced by a current source and a single resistor in parallel.
Thévenin's theorem – Norton's theorem; History. The use of duality in circuit theory is due to Alexander Russell who published his ideas in 1904. [1] [2] Examples
Simulation-based methods for time-based network analysis solve a circuit that is posed as an initial value problem (IVP). That is, the values of the components with memories (for example, the voltages on capacitors and currents through inductors) are given at an initial point of time t 0 , and the analysis is done for the time t 0 ≤ t ≤ t f ...
Also well known are the Norton and Thévenin equivalent current generator and voltage generator circuits respectively, as is the Y-Δ transform. None of these are discussed in detail here; the individual linked articles should be consulted. The number of equivalent circuits that a linear network can be transformed into is unbounded.
Thévenin's theorem Léon Charles Thévenin ( French: [tev(ə)nɛ̃] ; 30 March 1857, Meaux , Seine-et-Marne – 21 September 1926, Paris ) was a French telegraph engineer who extended Ohm's law to the analysis of complex electrical circuits .