Search results
Results From The WOW.Com Content Network
Along this line, true north is the same as magnetic north. West of the agonic line a compass will give a reading that is east of true north and by convention the magnetic declination is positive. Conversely, east of the agonic line a compass will point west of true north and the declination is negative. [29]
By convention, declination is positive when magnetic north is east of true north, and negative when it is to the west. Isogonic lines are lines on the Earth's surface along which the declination has the same constant value, and lines along which the declination is zero are called agonic lines. The lowercase Greek letter δ (delta) is frequently ...
Points north of the celestial equator have positive declinations, while those south have negative declinations. Any units of angular measure can be used for declination, but it is customarily measured in the degrees (°), minutes (′), and seconds (″) of sexagesimal measure, with 90° equivalent to a quarter circle. Declinations with ...
To avoid confusion with the "north" and "south" definitions relative to the invariable plane, the poles are called "positive" and "negative." The positive pole is the pole toward which the thumb points when the fingers of the right hand are curled in its direction of rotation. The negative pole is the pole toward which the thumb points when the ...
Isoclinic lines for the year 2020. Magnetic dip results from the tendency of a magnet to align itself with lines of magnetic field. As Earth's magnetic field lines are not parallel to the surface, the north end of a compass needle will point upward in the Southern Hemisphere (negative dip) or downward in the Northern Hemisphere (positive dip).
The international standard convention —that east is positive—is consistent with a right-handed Cartesian coordinate system, with the North Pole up. A specific longitude may then be combined with a specific latitude (positive in the northern hemisphere) to give a precise position on the
If the reference direction is north (either true north, magnetic north, or grid north), the bearing is termed an absolute bearing. In a contemporary land navigation context, true, magnetic, and grid bearings are always measured in this way, with true north, magnetic north, or grid north being 0° in a 360-degree system. [5]
Ecliptic latitude or celestial latitude (symbols: heliocentric b, geocentric β), measures the angular distance of an object from the ecliptic towards the north (positive) or south (negative) ecliptic pole. For example, the north ecliptic pole has a celestial latitude of +90°. Ecliptic latitude for "fixed stars" is not affected by precession.