Search results
Results From The WOW.Com Content Network
Doping of a pure silicon array. Silicon based intrinsic semiconductor becomes extrinsic when impurities such as Boron and Antimony are introduced.. In semiconductor production, doping is the intentional introduction of impurities into an intrinsic (undoped) semiconductor for the purpose of modulating its electrical, optical and structural properties.
In semiconductor physics, a donor is a dopant atom that, when added to a semiconductor, can form a n-type region. Phosphorus atom acting as a donor in the simplified 2D silicon lattice. For example, when silicon (Si), having four valence electrons , is to be doped as a n-type semiconductor , elements from group V like phosphorus (P) or arsenic ...
Semiconductor doping with boron, phosphorus, or arsenic is a common application of ion implantation. When implanted in a semiconductor, each dopant atom can create a charge carrier in the semiconductor after annealing. A hole can be created for a p-type dopant, and an electron for an n-type dopant. This modifies the conductivity of the ...
An extrinsic semiconductor is one that has been doped; during manufacture of the semiconductor crystal a trace element or chemical called a doping agent has been incorporated chemically into the crystal, for the purpose of giving it different electrical properties than the pure semiconductor crystal, which is called an intrinsic semiconductor.
This process is known as doping, and the resulting semiconductors are known as doped or extrinsic semiconductors. Apart from doping, the conductivity of a semiconductor can be improved by increasing its temperature. This is contrary to the behavior of a metal, in which conductivity decreases with an increase in temperature. [4]
Pure semiconductors that have been altered by the presence of dopants are known as extrinsic semiconductors (see intrinsic semiconductor). Dopants are introduced into semiconductors in a variety of techniques: solid sources, gases, spin on liquid, and ion implanting. See ion implantation, surface diffusion, and solid sources footnote.
The effect occurs when the electron carrier concentration exceeds the conduction band edge density of states, which corresponds to degenerate doping in semiconductors. In nominally doped semiconductors, the Fermi level lies between the conduction and valence bands. For example, in n-doped semiconductor, as the doping concentration is increased ...
Dopant activation is the process of obtaining the desired electronic contribution from impurity species in a semiconductor host. [1] The term is often restricted to the application of thermal energy following the ion implantation of dopants.