When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.

  3. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    the standard deviation of the mean itself (¯, which is the standard error), and; the estimator of the standard deviation of the mean (^ ¯, which is the most often calculated quantity, and is also often colloquially called the standard error).

  4. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    Bias in standard deviation for autocorrelated data. The figure shows the ratio of the estimated standard deviation to its known value (which can be calculated analytically for this digital filter), for several settings of α as a function of sample size n. Changing α alters the variance reduction ratio of the filter, which is known to be

  5. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    The red population has mean 100 and variance 100 (SD=10) while the blue population has mean 100 and variance 2500 (SD=50) where SD stands for Standard Deviation. In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable.

  6. Bessel's correction - Wikipedia

    en.wikipedia.org/wiki/Bessel's_correction

    The standard deviations will then be the square roots of the respective variances. Since the square root introduces bias, the terminology "uncorrected" and "corrected" is preferred for the standard deviation estimators: s n is the uncorrected sample standard deviation (i.e., without Bessel's correction)

  7. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    For a single group, M denotes the sample mean, μ the population mean, SD the sample's standard deviation, σ the population's standard deviation, and n is the sample size of the group. The t value is used to test the hypothesis on the difference between the mean and a baseline μ baseline. Usually, μ baseline is zero.

  8. Average absolute deviation - Wikipedia

    en.wikipedia.org/wiki/Average_absolute_deviation

    However, in-sample measurements deliver values of the ratio of mean average deviation / standard deviation for a given Gaussian sample n with the following bounds: [,], with a bias for small n. [7] The mean absolute deviation from the mean is less than or equal to the standard deviation; one way of proving this relies on Jensen's inequality.

  9. Statistical dispersion - Wikipedia

    en.wikipedia.org/wiki/Statistical_dispersion

    The blue population is much more dispersed than the red population. In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when ...