When.com Web Search

  1. Ads

    related to: quadratic polynomial factoring calculator math papa free algebra calculator systems equations

Search results

  1. Results From The WOW.Com Content Network
  2. List of open-source software for mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_open-source...

    The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations .

  3. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    Optimization is rarely used for solving polynomial systems, but it succeeded, circa 1970, in showing that a system of 81 quadratic equations in 56 variables is not inconsistent. [12] With the other known methods, this remains beyond the possibilities of modern technology, as of 2022. This method consists simply in minimizing the sum of the ...

  4. Cantor–Zassenhaus algorithm - Wikipedia

    en.wikipedia.org/wiki/Cantor–Zassenhaus_algorithm

    The Cantor–Zassenhaus algorithm takes as input a square-free polynomial (i.e. one with no repeated factors) of degree n with coefficients in a finite field whose irreducible polynomial factors are all of equal degree (algorithms exist for efficiently factoring arbitrary polynomials into a product of polynomials satisfying these conditions, for instance, () / ((), ′ ()) is a squarefree ...

  5. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    To factorize the initial polynomial, it suffices to factorize each square-free factor. Square-free factorization is therefore the first step in most polynomial factorization algorithms. Yun's algorithm extends this to the multivariate case by considering a multivariate polynomial as a univariate polynomial over a polynomial ring.

  6. Magma (computer algebra system) - Wikipedia

    en.wikipedia.org/.../Magma_(computer_algebra_system)

    Integer factorization algorithms include the Elliptic Curve Method, the Quadratic sieve and the Number field sieve. Algebraic number theory; Magma includes the KANT computer algebra system for comprehensive computations in algebraic number fields. A special type also allows one to compute in the algebraic closure of a field. Module theory and ...

  7. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property, a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials.

  8. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Given a quadratic polynomial of the form + the numbers h and k may be interpreted as the Cartesian coordinates of the vertex (or stationary point) of the parabola. That is, h is the x -coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h ), and k is the minimum value (or maximum value, if a < 0) of the quadratic ...

  9. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    In mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors.This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm.