Search results
Results From The WOW.Com Content Network
Polar liquids have a tendency to be more viscous than nonpolar liquids. [citation needed] For example, nonpolar hexane is much less viscous than polar water. However, molecule size is a much stronger factor on viscosity than polarity, where compounds with larger molecules are more viscous than compounds with smaller molecules.
Molecular geometries can be specified in terms of 'bond lengths', 'bond angles' and 'torsional angles'. The bond length is defined to be the average distance between the nuclei of two atoms bonded together in any given molecule. A bond angle is the angle formed between three atoms across at least two bonds.
Rather, bond types are interconnected and different compounds have varying degrees of different bonding character (for example, covalent bonds with significant ionic character are called polar covalent bonds). Six years later, in 1947, Ketelaar developed van Arkel's idea by adding more compounds and placing bonds on different sides of the triangle.
The polar sensitivity factor ρ* can be obtained by plotting the ratio of the measured reaction rates (k s) compared to the reference reaction versus the σ* values for the substituents. This plot will give a straight line with a slope equal to ρ*.
The polarity, dipole moment, polarizability and hydrogen bonding of a solvent determines what type of compounds it is able to dissolve and with what other solvents or liquid compounds it is miscible. Generally, polar solvents dissolve polar compounds best and non-polar solvents dissolve non-polar compounds best; hence "like dissolves like".
Likewise, it is used to calculate lipophilic efficiency in evaluating the quality of research compounds, where the efficiency for a compound is defined as its potency, via measured values of pIC 50 or pEC 50, minus its value of log P. [27] Drug permeability in brain capillaries (y axis) as a function of partition coefficient (x axis) [28]
The resulting uncertainty in atomic charges is ±0.1e to ±0.2e for highly charged compounds, and often <0.1e for compounds with atomic charges below ±1.0e. Often, the application of one or two of the above concepts already leads to very good values, especially taking into account a growing library of experimental benchmark compounds and ...
The relative static permittivity of a solvent is a relative measure of its chemical polarity. For example, water is very polar, and has a relative static permittivity of 80.10 at 20 °C while n-hexane is non-polar, and has a relative static permittivity of 1.89 at 20 °C. [26]