Ad
related to: example of nonlinear equation
Search results
Results From The WOW.Com Content Network
An example of a nonlinear delay differential equation; applications in number theory, distribution of primes, and control theory [5] [6] [7] Chrystal's equation: 1 + + + = Generalization of Clairaut's equation with a singular solution [8] Clairaut's equation: 1
See also Nonlinear partial differential equation, List of partial differential equation topics and List of nonlinear ordinary differential equations. ... φ 4 equation:
For example, the (very) nonlinear Navier-Stokes equations can be simplified into one linear partial differential equation in the case of transient, laminar, one dimensional flow in a circular pipe; the scale analysis provides conditions under which the flow is laminar and one dimensional and also yields the simplified equation.
For nonlinear equations these questions are in general very hard: for example, the hardest part of Yau's solution of the Calabi conjecture was the proof of existence for a Monge–Ampere equation. The open problem of existence (and smoothness) of solutions to the Navier–Stokes equations is one of the seven Millennium Prize problems in ...
A sample solution in the Lorenz attractor when ρ = 28, σ = 10, and β = 8 / 3 The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz. It is notable for having chaotic solutions for certain parameter values and initial conditions.
3 Example: Mathieu equation. 4 Shohat expansion. ... The theory can be found in Chapter 10 of Nonlinear Differential Equations and Dynamical Systems by Verhulst. [5]
A breather is a localized periodic solution of either continuous media equations or discrete lattice equations. The exactly solvable sine-Gordon equation [1] and the focusing nonlinear Schrödinger equation [2] are examples of one-dimensional partial differential equations that possess breather solutions. [3]
The Adomian decomposition method (ADM) is a semi-analytical method for solving ordinary and partial nonlinear differential equations.The method was developed from the 1970s to the 1990s by George Adomian, chair of the Center for Applied Mathematics at the University of Georgia. [1]