Search results
Results From The WOW.Com Content Network
In this general sense, proof by contradiction is also known as indirect proof, proof by assuming the opposite, [2] and reductio ad impossibile. [3] A mathematical proof employing proof by contradiction usually proceeds as follows: The proposition to be proved is P. We assume P to be false, i.e., we assume ¬P. It is then shown that ¬P implies ...
In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]
This resolution technique uses proof by contradiction and is based on the fact that any sentence in propositional logic can be transformed into an equivalent sentence in conjunctive normal form. [4] The steps are as follows. All sentences in the knowledge base and the negation of the sentence to be proved (the conjecture) are conjunctively ...
Reductio ad absurdum, painting by John Pettie exhibited at the Royal Academy in 1884. In logic, reductio ad absurdum (Latin for "reduction to absurdity"), also known as argumentum ad absurdum (Latin for "argument to absurdity") or apagogical arguments, is the form of argument that attempts to establish a claim by showing that the opposite scenario would lead to absurdity or contradiction.
A mathematical proof is a deductive argument for a ... In proof by contradiction, ... For example, the first proof of the four color theorem was a proof by exhaustion ...
A proof by contrapositive is a direct proof of the contrapositive of a statement. [14] However, indirect methods such as proof by contradiction can also be used with contraposition, as, for example, in the proof of the irrationality of the square root of 2.
One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.
Unlike standard Vieta jumping, constant descent is not a proof by contradiction, and it consists of the following four steps: [10] The equality case is proven so that it may be assumed that a > b. b and k are fixed and the expression relating a, b, and k is rearranged to form a quadratic with coefficients in terms of b and k, one of whose roots ...