Search results
Results From The WOW.Com Content Network
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
These relationships can be demonstrated graphically. The gradient of a line on a displacement time graph represents the velocity. The gradient of the velocity time graph gives the acceleration while the area under the velocity time graph gives the displacement. The area under a graph of acceleration versus time is equal to the change in velocity.
In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.
With this form for the displacement, the velocity now is found. The time derivative of the displacement vector is the velocity vector. In general, the derivative of a vector is a vector made up of components each of which is the derivative of the corresponding component of the original vector. Thus, in this case, the velocity vector is:
When the velocity changes sign (at the maximum and minimum displacements), the magnitude of the force on the mass changes by twice the magnitude of the frictional force, because the spring force is continuous and the frictional force reverses direction with velocity. The jump in acceleration equals the force on the mass divided by the mass.
Here, "object" simply means a distance with endpoints that are always mutually at rest, i.e., that are at rest in the same inertial frame of reference. If the relative velocity between an observer (or his measuring instruments) and the observed object is zero, then the proper length L 0 {\displaystyle L_{0}} of the object can simply be ...
Oresme provided a geometrical verification for the generalized Merton rule, which we would express today as = (+) (i.e., distance traveled is equal to one half of the sum of the initial and final velocities, multiplied by the elapsed time ), by finding the area of a trapezoid. [3]