When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  3. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    This identity and analogous relationships between the other trigonometric functions are summarized in the following table. Top: Trigonometric function sin θ for selected angles θ, π − θ, π + θ, and 2 π − θ in the four quadrants. Bottom: Graph of sine versus angle. Angles from the top panel are identified.

  4. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    The fixed point iteration x n+1 = cos(x n) with initial value x 0 = −1 converges to the Dottie number. Zero is the only real fixed point of the sine function; in other words the only intersection of the sine function and the identity function is sin ⁡ ( 0 ) = 0 {\displaystyle \sin(0)=0} .

  5. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and ⁠ θ 2 / 2 ⁠ helps trim the red away.

  6. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    2.3 Cosine and angle ratio identity. 2.4 Cosine and square of angle ratio identity. 2.5 Proof of compositions of trig and inverse trig functions. 3 See also. 4 Notes.

  7. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    This definition is valid for all angles, due to the definition of defining x = cos θ and y sin θ for the unit circle and thus x = c cos θ and y = c sin θ for a circle of radius c and reflecting our triangle in the y-axis and setting a = x and b = y. Alternatively, the identities found at Trigonometric symmetry, shifts, and periodicity may

  8. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    r = | z | = √ x 2 + y 2 is the magnitude of z and; φ = arg z = atan2(y, x). φ is the argument of z, i.e., the angle between the x axis and the vector z measured counterclockwise in radians, which is defined up to addition of 2π. Many texts write φ = tan −1 ⁠ y / x ⁠ instead of φ = atan2(y, x), but the first equation needs ...

  9. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    That cos nx is an n th-degree polynomial in cos x can be seen by observing that cos nx is the real part of one side of de Moivre's formula: ⁡ + ⁡ = (⁡ + ⁡). The real part of the other side is a polynomial in cos x and sin x , in which all powers of sin x are even and thus replaceable through the identity cos 2 x + sin 2 x = 1 .