Search results
Results From The WOW.Com Content Network
A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...
Given a function f with domain D and a preordered set (K, ≤) as codomain, an element y of K is an upper bound of f if y ≥ f (x) for each x in D. The upper bound is called sharp if equality holds for at least one value of x. It indicates that the constraint is optimal, and thus cannot be further reduced without invalidating the inequality.
But the region mentioned in the definition of the term "bounded type" cannot be the whole complex plane unless the function is constant because one must use the same P and Q over the whole region, and the only entire functions (that is, analytic in the whole complex plane) which are bounded are constants, by Liouville's theorem.
In functional analysis and operator theory, a bounded linear operator is a linear transformation: ...
A bounded set is not necessarily a closed set and vice versa. For example, a subset S of a 2-dimensional real space R 2 constrained by two parabolic curves x 2 + 1 and x 2 - 1 defined in a Cartesian coordinate system is closed by the curves but not bounded (so unbounded).
In mathematics, a uniformly bounded family of functions is a family of bounded functions that can all be bounded by the same constant. This constant is larger than or equal to the absolute value of any value of any of the functions in the family.
A line segment can be viewed as a degenerate case of an ellipse, in which the semiminor axis goes to zero, the foci go to the endpoints, and the eccentricity goes to one. A standard definition of an ellipse is the set of points for which the sum of a point's distances to two foci is a constant; if this constant equals the distance between the ...
An interval is said to be bounded, if it is both left- and right-bounded; and is said to be unbounded otherwise. Intervals that are bounded at only one end are said to be half-bounded. The empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. Bounded intervals are also commonly known as finite ...