When.com Web Search

  1. Ads

    related to: exponents practice problems

Search results

  1. Results From The WOW.Com Content Network
  2. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of their base. [2] Thus 3 + 5 2 = 28 and 3 × 5 2 = 75. These conventions exist to avoid notational ambiguity while allowing notation to remain brief. [4]

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  4. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Fermat's Last Theorem: Unlocking the Secret of an Ancient Mathematical Problem. Four Walls Eight Windows. ISBN 978-1-56858-077-7. Dickson LE (1919). History of the Theory of Numbers. Volume II. Diophantine Analysis. New York: Chelsea Publishing. pp. 545– 550, 615– 621, 731– 776. Dickson, LE (2005) [1920], History of the theory of numbers ...

  5. Elementary algebra - Wikipedia

    en.wikipedia.org/wiki/Elementary_algebra

    A quadratic equation is one which includes a term with an exponent of 2, for example, , [40] and no term with higher exponent. The name derives from the Latin quadrus , meaning square. [ 41 ] In general, a quadratic equation can be expressed in the form a x 2 + b x + c = 0 {\displaystyle ax^{2}+bx+c=0} , [ 42 ] where a is not zero (if it were ...

  6. Lifting-the-exponent lemma - Wikipedia

    en.wikipedia.org/wiki/Lifting-the-exponent_lemma

    In elementary number theory, the lifting-the-exponent lemma (LTE lemma) provides several formulas for computing the p-adic valuation of special forms of integers. The lemma is named as such because it describes the steps necessary to "lift" the exponent of p {\displaystyle p} in such expressions.

  7. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Inputs An integer b (base), integer e (exponent), and a positive integer m (modulus) Outputs The modular exponent c where c = b e mod m. Initialise c = 1 and loop variable e′ = 0; While e′ < e do Increment e′ by 1; Calculate c = (b ⋅ c) mod m; Output c; Note that at the end of every iteration through the loop, the equation c ≡ b e ...