Search results
Results From The WOW.Com Content Network
If a second-order differential equation has a characteristic equation with complex conjugate roots of the form r 1 = a + bi and r 2 = a − bi, then the general solution is accordingly y(x) = c 1 e (a + bi )x + c 2 e (a − bi )x. By Euler's formula, which states that e iθ = cos θ + i sin θ, this solution can be rewritten as follows:
The first order autoregressive model, = +, has a unit root when =.In this example, the characteristic equation is =.The root of the equation is =.. If the process has a unit root, then it is a non-stationary time series.
Characteristic equation may refer to: Characteristic equation (calculus), used to solve linear differential equations; Characteristic equation, the equation obtained by equating to zero the characteristic polynomial of a matrix or of a linear mapping; Method of characteristics, a technique for solving partial differential equations
As an example, consider the advection equation (this example assumes familiarity with PDE notation, and solutions to basic ODEs). + = where is constant and is a function of and . We want to transform this linear first-order PDE into an ODE along the appropriate curve; i.e. something of the form
Hurwitz polynomials are important in control systems theory, because they represent the characteristic equations of stable linear systems. Whether a polynomial is Hurwitz can be determined by solving the equation to find the roots, or from the coefficients without solving the equation by the Routh–Hurwitz stability criterion.
In mathematics, and particularly ordinary differential equations, a characteristic multiplier is an eigenvalue of a monodromy matrix. The logarithm of a characteristic multiplier is also known as characteristic exponent. [1] They appear in Floquet theory of periodic differential operators and in the Frobenius method.
For higher degree polynomials the extra computation involved in this mapping can be avoided by testing the Schur stability by the Schur-Cohn test, the Jury test or the Bistritz test. Necessary condition: a Hurwitz stable polynomial (with real coefficients) has coefficients of the same sign (either all positive or all negative).
The characteristic equation, also known as the determinantal equation, [1] [2] [3] is the equation obtained by equating the characteristic polynomial to zero. In spectral graph theory , the characteristic polynomial of a graph is the characteristic polynomial of its adjacency matrix .