Search results
Results From The WOW.Com Content Network
The study of these differential equations with constant coefficients dates back to Leonhard Euler, who introduced the exponential function e x, which is the unique solution of the equation f′ = f such that f(0) = 1. It follows that the n th derivative of e cx is c n e cx, and this allows solving homogeneous linear differential equations ...
Numerical methods for solving first-order IVPs often fall into one of two large categories: [5] linear multistep methods, or Runge–Kutta methods.A further division can be realized by dividing methods into those that are explicit and those that are implicit.
Among ordinary differential equations, linear differential equations play a prominent role for several reasons. Most elementary and special functions that are encountered in physics and applied mathematics are solutions of linear differential equations (see Holonomic function). When physical phenomena are modeled with non-linear equations, they ...
Linear multistep methods are used for the numerical solution of ordinary differential equations. Conceptually, a numerical method starts from an initial point and then takes a short step forward in time to find the next solution point. The process continues with subsequent steps to map out the solution.
In mathematics and computational science, the Euler method (also called the forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta ...
Explicit and implicit methods are approaches used in numerical analysis for obtaining numerical approximations to the solutions of time-dependent ordinary and partial differential equations, as is required in computer simulations of physical processes.
An ODE problem can be expanded with the auxiliary variables which make the power series method trivial for an equivalent, larger system. Expanding the ODE problem with auxiliary variables produces the same coefficients (since the power series for a function is unique) at the cost of also calculating the coefficients of auxiliary equations.
Reduction of order (or d’Alembert reduction) is a technique in mathematics for solving second-order linear ordinary differential equations. It is employed when one solution () is known and a second linearly independent solution () is desired. The method also applies to n-th order equations.