When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Differential operator - Wikipedia

    en.wikipedia.org/wiki/Differential_operator

    In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function (in the style of a higher-order function in computer science ).

  3. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    Combining derivatives of different variables results in a notion of a partial differential operator. The linear operator which assigns to each function its derivative is an example of a differential operator on a function space. By means of the Fourier transform, pseudo-differential operators can be defined which allow for fractional calculus.

  4. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    In general, the operator (T − λI) may not have an inverse even if λ is not an eigenvalue. For this reason, in functional analysis eigenvalues can be generalized to the spectrum of a linear operator T as the set of all scalars λ for which the operator (T − λI) has no bounded inverse. The spectrum of an operator always contains all its ...

  5. Linearity of differentiation - Wikipedia

    en.wikipedia.org/wiki/Linearity_of_differentiation

    In calculus, the derivative of any linear combination of functions equals the same linear combination of the derivatives of the functions; [1] this property is known as linearity of differentiation, the rule of linearity, [2] or the superposition rule for differentiation. [3]

  6. Linear differential equation - Wikipedia

    en.wikipedia.org/wiki/Linear_differential_equation

    In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form + ′ + ″ + () = where a 0 (x), ..., a n (x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y (n) are the successive derivatives of an unknown function y of ...

  7. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    As a second-order differential operator, the Laplace operator maps C k functions to C k−2 functions for k ≥ 2.It is a linear operator Δ : C k (R n) → C k−2 (R n), or more generally, an operator Δ : C k (Ω) → C k−2 (Ω) for any open set Ω ⊆ R n.

  8. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n×n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n×n matrix given by the power series = =!

  9. Operational calculus - Wikipedia

    en.wikipedia.org/wiki/Operational_calculus

    Linear differential equations can then be recast in the form of "functions" F(p) of the operator p acting on the unknown function equaling the known function. Here, F is defining something that takes in an operator p and returns another operator F(p). Solutions are then obtained by making the inverse operator of F act on the