When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r > 1, then the series diverges. If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  3. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    In summary, series addition and scalar multiplication gives the set of convergent series and the set of series of real numbers the structure of a real vector space. Similarly, one gets complex vector spaces for series and convergent series of complex numbers. All these vector spaces are infinite dimensional.

  4. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    The Cauchy convergence test is a method used to test infinite series for convergence. It relies on bounding sums of terms in the series. It relies on bounding sums of terms in the series. This convergence criterion is named after Augustin-Louis Cauchy who published it in his textbook Cours d'Analyse 1821.

  5. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.

  6. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    The root test is therefore more generally applicable, but as a practical matter the limit is often difficult to compute for commonly seen types of series. Integral test. The series can be compared to an integral to establish convergence or divergence. Let () = be a positive and monotonically decreasing function. If

  7. Direct comparison test - Wikipedia

    en.wikipedia.org/wiki/Direct_comparison_test

    In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.

  8. nth-term test - Wikipedia

    en.wikipedia.org/wiki/Nth-term_test

    Many authors do not name this test or give it a shorter name. [2] When testing if a series converges or diverges, this test is often checked first due to its ease of use. In the case of p-adic analysis the term test is a necessary and sufficient condition for convergence due to the non-Archimedean ultrametric triangle inequality.

  9. Cauchy condensation test - Wikipedia

    en.wikipedia.org/wiki/Cauchy_condensation_test

    The test can be useful for series where n appears as in a denominator in f. For the most basic example of this sort, the harmonic series ∑ n = 1 ∞ 1 / n {\textstyle \sum _{n=1}^{\infty }1/n} is transformed into the series ∑ 1 {\textstyle \sum 1} , which clearly diverges.