When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Square number - Wikipedia

    en.wikipedia.org/wiki/Square_number

    Since a prime number has factors of only 1 and itself, and since m = 2 is the only non-zero value of m to give a factor of 1 on the right side of the equation above, it follows that 3 is the only prime number one less than a square (3 = 2 2 − 1). More generally, the difference of the squares of two numbers is the product of their sum and ...

  3. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    The products of small numbers may be calculated by using the squares of integers; for example, to calculate 13 × 17, one can remark 15 is the mean of the two factors, and think of it as (15 − 2) × (15 + 2), i.e. 15 2 − 2 2. Knowing that 15 2 is 225 and 2 2 is 4, simple subtraction shows that 225 − 4 = 221, which is the desired product.

  4. Legendre's three-square theorem - Wikipedia

    en.wikipedia.org/wiki/Legendre's_three-square...

    Gauss [10] pointed out that the four squares theorem follows easily from the fact that any positive integer that is 1 or 2 mod 4 is a sum of 3 squares, because any positive integer not divisible by 4 can be reduced to this form by subtracting 0 or 1 from it. However, proving the three-square theorem is considerably more difficult than a direct ...

  5. Lagrange's four-square theorem - Wikipedia

    en.wikipedia.org/wiki/Lagrange's_four-square_theorem

    In the descent above, we must rule out both the case y 1 = y 2 = y 3 = y 4 = m/2 (which would give r = m and no descent), and also the case y 1 = y 2 = y 3 = y 4 = 0 (which would give r = 0 rather than strictly positive). For both of those cases, one can check that mp = x 1 2 + x 2 2 + x 3 2 + x 4 2 would be a multiple of m 2, contradicting the ...

  6. Euler's four-square identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_four-square_identity

    Comment: The proof of Euler's four-square identity is by simple algebraic evaluation. Quaternions derive from the four-square identity, which can be written as the product of two inner products of 4-dimensional vectors, yielding again an inner product of 4-dimensional vectors: (a·a)(b·b) = (a×b)·(a×b).

  7. Product (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Product_(mathematics)

    In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Brahmagupta–Fibonacci identity - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta–Fibonacci...

    In algebra, the Brahmagupta–Fibonacci identity [1] [2] expresses the product of two sums of two squares as a sum of two squares in two different ways. Hence the set of all sums of two squares is closed under multiplication. Specifically, the identity says (+) (+) = + (+) = (+) + ().