Search results
Results From The WOW.Com Content Network
Earth's atmosphere photographed from the International Space Station.The orange and green line of airglow is at roughly the altitude of the Kármán line. [1]The Kármán line (or von Kármán line / v ɒ n ˈ k ɑːr m ɑː n /) [2] is a conventional definition of the edge of space; it is widely but not universally accepted.
Transatmospheric orbit (TAO): geocentric orbits with an apogee above 100 km and perigee that intersects with the defined atmosphere. [4] Very low Earth orbit (VLEO) is defined as altitudes between approximately 100 - 450 km above Earth’s surface. [5] [6] Low Earth orbit (LEO): geocentric orbits with altitudes below 2,000 km (1,200 mi). [7]
In this case the lowest required delta-v, to reach 100 km altitude, is about 1.4 km/s. Moving slower, with less free-fall, would require more delta-v. [citation needed] Compare this with orbital spaceflights: a low Earth orbit (LEO), with an altitude of about 300 km, needs a speed around 7.7 km/s, requiring a delta-v of about 9.2 km/s.
Kittinger leaps from his gondola at 31.3 km (102,800 feet). Similar to skydiving, space diving is the act of jumping from an aircraft or spacecraft in near space and falling towards Earth. The Kármán line is a common definition as to where space begins, 100 km (62 mi
In the exosphere, beginning at about 600 km (375 mi) above sea level, the atmosphere turns into space, although, by the judging criteria set for the definition of the Kármán line (100 km), most of the thermosphere is part of space. The border between the thermosphere and exosphere is known as the thermopause.
Astronaut Bill Anders, who orbited the moon aboard Apollo 8 in 1968, has died in a plane crash off the coast of Washington state. His photo 'Earthrise' captivated the world.
A wide variety of sources [5] [6] [7] define LEO in terms of altitude.The altitude of an object in an elliptic orbit can vary significantly along the orbit. Even for circular orbits, the altitude above ground can vary by as much as 30 km (19 mi) (especially for polar orbits) due to the oblateness of Earth's spheroid figure and local topography.
The Kármán line, defined as 100 km (62 mi) above Earth's surface, is a working definition for the boundary between the atmosphere and outer space. [ 237 ] Thermal energy causes some of the molecules at the outer edge of the atmosphere to increase their velocity to the point where they can escape from Earth's gravity.