Search results
Results From The WOW.Com Content Network
Two main approaches are used in nanotechnology. In the "bottom-up" approach, materials and devices are built from molecular components which assemble themselves chemically by principles of molecular recognition. [24] In the "top-down" approach, nano-objects are constructed from larger entities without atomic-level control. [25]
The top-down approach is breaking down of a system into small components, while bottom-up is assembling sub-systems into larger system. [15] A bottom-up approach for nano-assembly is a primary research target for nano-fabrication because top down synthesis is expensive (requiring external work) and is not selective on very small length scales, but is currently the primary mode of industrial ...
Recently, the use of microorganisms to synthesize functional nanoparticles has been of great interest. Microorganisms can change the oxidation state of metals. [citation needed] These microbial processes have opened up new opportunities for us to explore novel applications, for example, the biosynthesis of metal nanomaterials. In contrast to ...
Nanomanufacturing refers to manufacturing processes of objects or material with dimensions between one and one hundred nanometers. [15] These processes results in nanotechnology, extremely small devices, structures, features, and systems that have applications in organic chemistry, molecular biology, aerospace engineering, physics, and beyond. [16]
Supermicelles are formed via bottom-up chemical approaches, such as self-assembly of long cylindrical micelles into radial cross-, star- or dandelion-like patterns in a specially selected solvent; solid nanoparticles may be added to the solution to act as nucleation centers and form the central core of the supermicelle.
Nanochemistry is an emerging sub-discipline of the chemical and material sciences that deals with the development of new methods for creating nanoscale materials. [1] The term "nanochemistry" was first used by Ozin in 1992 as 'the uses of chemical synthesis to reproducibly afford nanomaterials from the atom "up", contrary to the nanoengineering and nanophysics approach that operates from the ...
Some approaches to diffusion based delivery have used Nano-Structured-DNA, [16] carbon nanotubes, [17] and other nanoparticles [18] as vesicles for the delivery of genetic information. . These methods typically rely on functionalization of the surface or manipulation of porosity of a nanocarrier in order to optimize the loading and delivery of ...
Nanomaterials research takes a materials science-based approach to nanotechnology, leveraging advances in materials metrology and synthesis which have been developed in support of microfabrication research. Materials with structure at the nanoscale often have unique optical, electronic, thermo-physical or mechanical properties.