When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mollweide's formula - Wikipedia

    en.wikipedia.org/wiki/Mollweide's_formula

    In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle. [ 1 ] [ 2 ] A variant in more geometrical style was first published by Isaac Newton in 1707 and then by Friedrich Wilhelm von Oppel [ de ] in 1746.

  3. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  4. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere .

  5. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    In the case that the side c has length π /2 on the unit sphere the equations governing the remaining sides and angles may be obtained by applying the rules for the right spherical triangle of the previous section to the polar triangle A'B'C' with sides a', b', c' such that A' = π − a, a' = π − A etc.

  6. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length ⁠ ⁠, which has area 1. There are several ways to calculate the area of an arbitrary triangle.

  7. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    the third side of a triangle if two sides and an angle opposite to one of them is known (this side can also be found by two applications of the law of sines): [a] = ⁡ ⁡. These formulas produce high round-off errors in floating point calculations if the triangle is very acute, i.e., if c is small relative to a and b or γ is small compared to 1.

  8. Acute and obtuse triangles - Wikipedia

    en.wikipedia.org/wiki/Acute_and_obtuse_triangles

    Heron triangles have integer sides and integer area. The oblique Heron triangle with the smallest perimeter is acute, with sides (6, 5, 5). The two oblique Heron triangles that share the smallest area are the acute one with sides (6, 5, 5) and the obtuse one with sides (8, 5, 5), the area of each being 12.

  9. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    Let u, v, and w denote the unit vectors from the center of the sphere to those corners of the triangle. We have u · u = 1, v · w = cos c, u · v = cos a, and u · w = cos b.The vectors u × v and u × w have lengths sin a and sin b respectively and the angle between them is C, so ⁡ ⁡ ⁡ = () = () () = ⁡ ⁡ ⁡