Search results
Results From The WOW.Com Content Network
Plot of the number of divisors of integers from 1 to 1000. Highly composite numbers are in bold and superior highly composite numbers are starred. ... 10, 12, 15, 20 ...
If it is, the original number is divisible by 4. In addition, the result of this test is the same as the original number divided by 4. Example. General rule. 2092 (The original number) 20 92 (Take the last two digits of the number, discarding any other digits) 92 ÷ 4 = 23 (Check to see if the number is divisible by 4)
The values 12! and 20! are the largest factorials that can be stored in, respectively, the 32-bit [84] and 64-bit integers. [85] Floating point can represent larger factorials, but approximately rather than exactly, and will still overflow for factorials larger than 170 ! {\displaystyle 170!} .
Prime numbers have exactly 2 divisors, and highly composite numbers are in bold. 7 is a divisor of 42 because =, so we can say It can also be said that 42 is divisible by 7, 42 is a multiple of 7, 7 divides 42, or 7 is a factor of 42. The non-trivial divisors of 6 are 2, −2, 3, −3.
12 (twelve) is the natural number following 11 and preceding 13.. Twelve is the 3rd superior highly composite number, [1] the 3rd colossally abundant number, [2] the 5th highly composite number, and is divisible by the numbers from 1 to 4, and 6, a large number of divisors comparatively.
Five is the only prime that belongs to two pairs, as every twin prime pair greater than (3, 5) is of the form (, +) for some natural number n; that is, the number between the two primes is a multiple of 6. [4] As a result, the sum of any pair of twin primes (other than 3 and 5) is divisible by 12.
The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...
In words: the distinct prime factors of 20 are 2 and 5; half of the twenty integers from 1 to 20 are divisible by 2, leaving ten; a fifth of those are divisible by 5, leaving eight numbers coprime to 20; these are: 1, 3, 7, 9, 11, 13, 17, 19.