Ads
related to: protic solvents and aprotic solvents examples
Search results
Results From The WOW.Com Content Network
In general terms, any solvent that contains a labile H + is called a protic solvent. The molecules of such solvents readily donate protons (H +) to solutes, often via hydrogen bonding. Water is the most common protic solvent. Conversely, polar aprotic solvents cannot donate protons but still have the ability to dissolve many salts. [1] [2]
A polar aprotic solvent is a solvent that lacks an acidic proton and is polar. Such solvents lack hydroxyl and amine groups. In contrast to protic solvents, these solvents do not serve as proton donors in hydrogen bonding, although they can be proton acceptors. Many solvents, including chlorocarbons and hydrocarbons, are classifiable as aprotic ...
Solvents with a dielectric constant (more accurately, relative static permittivity) greater than 15 (i.e. polar or polarizable) can be further divided into protic and aprotic. Protic solvents, such as water, solvate anions (negatively charged solutes) strongly via hydrogen bonding.
This difference arises from acid/base reactions between protic solvents (not aprotic solvents) and strong nucleophiles. While it is true that steric effects also affect the relative reaction rates, [ 12 ] however, for demonstration of principle for solvent polarity on S N 2 reaction rates, steric effects may be neglected.
An inorganic nonaqueous solvent is a solvent other than water, that is not an organic compound. These solvents are used in chemical research and industry for reactions that cannot occur in aqueous solutions or require a special environment. Inorganic nonaqueous solvents can be classified into two groups, protic solvents and aprotic solvents.
Solvents that can donate H-bonds are referred to as protic, while solvents that do not contain a polarized bond to a hydrogen atom and cannot donate a hydrogen bond are called aprotic. H-bond donor ability is classified on a scale (α). [6] Protic solvents can solvate solutes that can accept hydrogen bonds.
These solvents all possess atoms with odd atomic numbers, either nitrogen or a halogen. Such atoms enable the formation of singly charged, nonradical ions (which must have at least one odd-atomic-number atom), which are the most favorable autoionization products. Protic solvents, mentioned previously, use hydrogen for this role.
In non-polar aprotic solvents, the enol form is strongly favored due to the formation of an intramolecular hydrogen-bond, while in polar aprotic solvents, such as methylene chloride, the enol form is less favored due to the interaction between the polar solvent and the polar diketone. [example needed] In protic solvents, the equilibrium lies ...